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Fig. 1. We introduce a practical reconstruction method for 3D scene geometry from short handheld omnidirectional videos. (a) Example video frame captured
by a 360° camera (inset). (b) An inverse depth frame estimated by our spherical disparity estimation. (c) To reconstruct egocentric scene geometry effectively
from a short omnidirectional video, we devise a scene reconstruction method using a novel spherical binoctree data structure. (d) The reconstructed 3D scene
geometry. (e) 3D rendering of the reconstructed scene with our texture mapping. Please see our supplemental video for additional results and comparisons.

Omnidirectional videos capture environmental scenes effectively, but they

have rarely been used for geometry reconstruction. In this work, we propose

an egocentric 3D reconstruction method that can acquire scene geometry

with high accuracy from a short egocentric omnidirectional video. To this

end, we first estimate per-frame depth using a spherical disparity network.

We then fuse per-frame depth estimates into a novel spherical binoctree data
structure that is specifically designed to tolerate spherical depth estimation

errors. By subdividing the spherical space into binary tree and octree nodes

that represent spherical frustums adaptively, the spherical binoctree effec-

tively enables egocentric surface geometry reconstruction for environmental

scenes while simultaneously assigning high-resolution nodes for closely

observed surfaces. This allows to reconstruct an entire scene from a short

video captured with a small camera trajectory. Experimental results validate

the effectiveness and accuracy of our approach for reconstructing the 3D ge-

ometry of environmental scenes from short egocentric omnidirectional video

inputs. We further demonstrate various applications using a conventional

omnidirectional camera, including novel-view synthesis, object insertion,

and relighting of scenes using reconstructed 3D models with texture.

Authors’ addresses: Hyeonjoong Jang, KAIST, South Korea, hjjang@vclab.kaist.ac.kr;

Andréas Meuleman, KAIST, South Korea, ameuleman@vclab.kaist.ac.kr; Dahyun Kang,

KAIST, South Korea, dhkang@vclab.kaist.ac.kr; Donggun Kim, KAIST, South Korea,

dgkim@vclab.kaist.ac.kr; Christian Richardt, University of Bath, United Kingdom,

christian@richardt.name; Min H. Kim, KAIST, South Korea, minhkim@kaist.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

0730-0301/2022/7-ART100

https://doi.org/10.1145/3528223.3530074

CCS Concepts: • Computing methodologies→ 3D imaging.

Additional Key Words and Phrases: 360° video, 3D reconstruction, binoctree,

spherical disparity, TSDF fusion

ACM Reference Format:
Hyeonjoong Jang, Andréas Meuleman, Dahyun Kang, Donggun Kim, Chris-

tian Richardt, and Min H. Kim. 2022. Egocentric Scene Reconstruction from

an Omnidirectional Video. ACM Trans. Graph. 41, 4, Article 100 (July 2022),

12 pages. https://doi.org/10.1145/3528223.3530074

1 INTRODUCTION
Omnidirectional cameras with two fisheye lenses (e.g., Ricoh Theta

or Insta360) have become popular in recent years as they are cost-

effective for capturing spherical images and videos of surrounding

scenes. This makes these imaging devices ideal for many vision

applications, such as SLAM. Spherical images have been commonly

used in this regard of omnidirectional imaging, but rarely for geo-

metric understanding or reconstruction of 3D scenes.

In traditional 3D reconstruction, depth maps are obtained by

multi-view stereo algorithms that are heavily specialized for per-

spective images. Depth maps are then often fused using truncated

signed distance functions stored in a Cartesian voxel grid. This data

structure is effective particularly for object- or room-scale, perspec-
tive inputs. However, as we employ spherical image inputs that

capture outward-looking (egocentric) spherical views where distant

surfaces have less details, observations should be handled at dif-

ferent resolutions depending on the distance between the camera

center and surfaces. In other words, the data structure for egocentric
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spherical input should be parameterized by the distance from the

camera, resulting in a spherical coordinate system. We therefore

devise a spherical subdivision scheme for 3D reconstruction that is

specially designed for omnidirectional cameras.

In this work, we present a practical 3D reconstruction method

that acquires scene-scale geometry with texture from an egocentric,

handheld omnidirectional video captured with a short camera trajec-

tory. To this end, we introduce a new approach for dense spherical

depth estimation from spherical stereo images using a spherical

disparity network trained on a new synthetic spherical RGBD video

dataset. We then devise a novel hierarchical data structure, the spher-
ical binoctree, which subdivides the spherical space into binary and

octree nodes that represent spherical frustums adaptively to assign

high-resolution nodes for closely observed surfaces, as shown in

Figure 1c. We also combine our spherical binoctree with an adaptive

truncated signed distance function designed to tolerate errors in

the spherical depth estimated from the given handheld video. To re-

construct a high-resolution global texture map, we devise a texture

reconstruction method that selects high-resolution texture informa-

tion from near frames by evaluating input frames with respect to

the reconstructed surfaces in a regularized resolution of solid an-

gles. Lastly, our complete 3D reconstruction system enables various

applications using scene-scale geometry, such as novel view syn-

thesis, relighting, and placing virtual objects into the reconstructed

scene. We make our source code available for reproducibility and

also release our new synthetic spherical RGBD video dataset on our

project page https://vclab.kaist.ac.kr/siggraph2022p2/.

2 RELATED WORK
Spherical Depth Estimation. Methods formonocular spherical depth

estimation [Eder et al. 2019; Jiang et al. 2021; Jin et al. 2020; Pintore

et al. 2021; Sun et al. 2021; Wang et al. 2020b; Zeng et al. 2020; Zioulis

et al. 2019, 2018] and learned spherical stereo methods [Lai et al.

2019; Wang et al. 2018, 2020a] are mostly trained on synthetic in-

door scenes, and thus tend to perform poorly on real and/or outdoor

scenes. Spherical rectification [Li 2008; Matzen et al. 2017] enables

the use of traditional correspondence finding methods, which we

exploit in our approach. Spherical multi-view stereo often builds

on sphere sweeping [Im et al. 2016; Komatsu et al. 2020; Meuleman

et al. 2021; Won et al. 2019a,b] and is often limited in depth map res-

olution. None of these methods is specialized for 3D reconstruction

from spherical input. On the other hand, we combine an optical flow

network with spherical rectification to estimate spherical depth.

Please see Supplemental Section 1 for a more detailed discussion of

spherical depth estimation techniques.

Mesh-based Reconstruction. Sparse scene geometry, for example

from structure-from-motion (SfM) or simultaneous localization and

mapping (SLAM), can be reconstructed as a mesh by triangulation

of a point cloud [Kang and Szeliski 1997] or by fitting a proxy

geometry [Bertel et al. 2020]. More geometric detail can be recovered

by meshing dense depth maps computed using stereo or multi-view

stereo [Pollefeys et al. 2004]. Kim and Hilton [2013] reconstruct

multiple meshes from spherical stereo images at discrete locations,

and merge them into a global mesh using surface selection. Several

view synthesis methods estimate per-view depth maps using multi-

view stereo and blend them together at render time [Hedman et al.

2016; Overbeck et al. 2018; Parra Pozo et al. 2019], which does

not produce a consistent global scene geometry. Other approaches

stitch the per-view depth maps into a panoramic depth map that is

converted into a multi-layer mesh for handling occlusions [Hedman

et al. 2017; Hedman and Kopf 2018; Serrano et al. 2019; Zhang

et al. 2020]. While this works well for view synthesis, no complete

geometry model is reconstructed. In contrast, our method enables

efficient reconstruction of complete scene geometry.

Volumetric Reconstruction. Fusing multiple depth maps into glob-

ally consistent scene geometry is greatly simplified using a volumet-

ric representation, such as the truncated signed distance function

(TSDF). Curless and Levoy [1996] introduced this approach for com-

bining depth maps from a laser range finder, and KinectFusion [Izadi

et al. 2011] popularized this approach for active depth sensors. How-

ever, the scale and resolution of the scene geometry is limited by

the use of a dense voxel grid. Follow-up work therefore exploited

sparsity using voxel hashing [Nießner et al. 2013] or an octree-based

voxel grid [Zeng et al. 2013], to reconstruct high-quality meshes of

larger scenes. These methods are mostly limited to indoor scenes

due to the short depth range and small field-of-view of the depth

sensors, which makes scanning large scenes difficult, particularly

outdoors. Won et al. [2020] passively reconstruct large indoor scenes

by integrating multiple spherical depth maps into a TSDF volume

using voxel hashing. This requires a lot of memory as near and far

objects are stored using the same fixed voxel size. Lidar imaging can

provide reliable but sparse depth outdoors [Kühner and Kümmerle

2020], but is still expensive. None of these techniques can perform

scene-scale 3D reconstruction from spherical images. To the best

of our knowledge, our approach is the first specially designed for

short trajectories of an omnidirectional video camera.

3 SPHERICAL SCENE RECONSTRUCTION
Acquisition Setup. We capture an omnidirectional video using a

conventional 360° video camera, an Insta360 ONE R, which can

capture videos with 5760×2880 resolution at 30 fps. Because it is an

omnidirectional video, it is unavoidable to capture the photographer.

However, we found that when using a monopod, the photographer

can easily be masked out using a static mask image. Our videos are

10–120 seconds in length and we show results for different camera

motions, including circular motions and along more general curves.

Camera Pose Estimation. We estimate per-frame camera poses us-

ing OpenVSLAM [Sumikura et al. 2019], an omnidirectional visual

SLAM method that has since been discontinued by the authors. A

suitable alternative would be OpenMVG’s omnidirectional structure-

from-motion [Moulon et al. 2016]. Following the approach of Bertel

et al. [2020], we run the SLAM twice for better pose accuracy. In the

first pass, we extract feature points, estimate rough camera poses

and reconstruct a sparse 3D point cloud. Due to the progressive

optimization, the estimated camera poses do not reach the required

accuracy. In the second pass, we reconstruct the camera poses again

based on the previously reconstructed sparse 3D map.
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Fig. 2. Frames from the training set of our spherical RGBD video dataset.

3.1 Spherical Depth Estimation
For a given omnidirectional video, we first estimate per-frame depth

maps using a learning-based spherical stereo technique. We adapt

an existing perspective optical flow estimation network to learn

spherical disparity estimation, and fine-tune it on our new spherical

RGBD video dataset. We then combine multiple stereo pairs for each

video frame to remove outliers and mask unreliable areas, for robust

spherical depth estimation.

3.1.1 Spherical RGBD Video Dataset. To achieve more accurate

depth maps than existing spherical depth estimation networks [Ko-

matsu et al. 2020; Wang et al. 2020a; Won et al. 2019a], we fine-tune

an off-the-shelf optical flow estimation network trained for perspec-

tive images using a new synthetic dataset of spherical videos with

ground-truth depthmaps and camera poses (see Figure 2). We collect

twelve diverse scenes [Blender Online Community 2022; McGuire

2017], from which we render a total of 102 upright spherical RGBD

videos using Blender. Each video is 500 frames long and rendered

in equirectangular format at a resolution of 2048×1024 pixels. The
camera is moving along a random 3D spline path.

3.1.2 Spherical Rectification. Like for perspective images, spherical

images can be rectified, so that finding correspondence becomes a

1D search problem for the disparity along epipolar lines. We use the

spherical rectification technique by Li [2008], which conveniently

aligns epipolar lines with horizontal image scanlines. First, we ro-

tate both spherical images to align their cameras’ 𝑥-axes with the

baseline between the cameras (see Figure 3a). Then, we rotate the

second image about the 𝑥-axis such that corresponding axes of both

camera coordinate systems are parallel to each other. The resulting
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Fig. 3. (a) Steps of spherical rectification according to Li [2008]. (b) For
a stereo pair of cameras 𝐶ref and 𝐶neigh with baseline 𝑏, a 3D point 𝑃 is
projected onto each spherical image at angles 𝜙ref and 𝜙neigh, respectively,
which defines the spherical disparity 𝛿 of the point 𝑃 .
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Fig. 4. Epipolar lines (orange) become horizontal after spherical rectification.

spherical images are then represented using transverse equirectan-
gular projection [Matzen et al. 2017], in which the (epi)poles are

along the left and right image edges, as shown in Figure 4. Once

rectified, we can apply any correspondence algorithm, including

optical flow, as described in the next section.

3.1.3 Spherical Disparity vs. Distance. The geometric relation be-

tween distance and disparity for omnidirectional cameras is different

from that of a perspective camera. To supervise our spherical dispar-

ity estimation network, we need to convert per-pixel ground-truth

(radial) distance to spherical disparity in the transverse equirectan-

gular projection of a rectified spherical stereo pair (Figure 3a).

We derive the disparity using the notation in Figure 3b and use

it for both reconstruction and rendering. According to the law of

sines, we can relate the angular disparity 𝛿 at the point 𝑃 to the

baseline 𝑏 between cameras, the angle (𝜋 −𝛿 −𝜙
ref
) at the neighbor

camera 𝐶
neigh

, and the distance 𝑑 of the point 𝑃 from the reference

camera 𝐶
ref
:

sin𝛿

𝑏
=
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ref
)

𝑑
=

sin(𝛿 + 𝜙
ref
)

𝑑
(1)

=
sin𝛿 cos𝜙

ref
+ cos𝛿 sin𝜙

ref

𝑑
. (2)

Next, we rearrange to solve for the disparity 𝛿 :

𝑑 sin𝛿

𝑏
= sin𝛿 cos𝜙

ref
+ cos𝛿 sin𝜙

ref
, (3)

sin𝛿 ·
(
𝑑

𝑏
− cos𝜙

ref

)
= cos𝛿 sin𝜙

ref
, (4)
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cos𝛿
= tan𝛿 =
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ref

𝑑
𝑏
− cos𝜙

ref
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𝑏 sin𝜙

ref
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ref

, (5)

𝛿 = arctan

(
𝑏 sin𝜙

ref

𝑑 − 𝑏 cos𝜙
ref

)
. (6)

The angular disparity 𝛿 is then linearly scaled to disparity Δ = 𝑤𝛿
𝜋

in the transverse equirectangular projection based on the image

width𝑤 (in pixels).

3.1.4 Disparity Estimation. We build our spherical disparity estima-

tion on RAFT [Teed and Deng 2020], which has recently set a new

state of the art in optical flow estimation between perspective images.

We adapt RAFT for horizontal disparity estimation between rectified

spherical stereo images by restricting the vertical flow component to
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zero, i.e., we only optimize for the horizontal component of the flow

that corresponds to disparity. We then fine-tune the parameters of

the original perspective model on our new custom-made spherical

RGBD video dataset. As illustrated in Figure 5, this adaptation step

helps to overcome the discrepancy between the perspective images

originally used for training RAFT and the transverse equirectangular

images with spherical distortions.

During training, we randomly pick a stereo pair from our spheri-

cal RGBD video dataset, so that various camera baselines are used for

training. Then, for the selected stereo pair, we rectify both stereo im-

ages and compute the ground-truth disparity map from the ground-

truth depth using Equation 6. Due to memory limitations of our

NVIDIA Titan RTX GPU, we had to reduce the input spatial resolu-

tion from 1024×2048 to 768×1536. For the training, we optimized

1,000 iterations with batch size 8, using 8,000 stereo pairs in total.

Using the fine-tuned model, we estimate 𝐾 =11 disparity maps

from the selected neighbor frames in Section 3.1.5. Each stereo pair

is rectified independently and padded by one-eighth of its height

at the top and bottom edges using wrap-around padding. In this

way, we can achieve better continuity of the spherical image during

correspondence finding. Next, we estimate stereo disparity from the

reference to the neighbor view and crop the resulting disparity maps

back to the unpadded size. Then, we convert each disparity map

to a depth map using the inverse of Equation 6. Finally, we apply

the validity masks described above to ignore unreliable regions,

and merge all 𝐾 depth maps into one depth map that is both more

accurate and more robust, using the per-pixel median of the valid

pixels to remove outliers.

3.1.5 Neighbor Frame Selection. Our goal is to estimate per-frame

depth maps for every input frame. For each frame, we thus select 𝐾

neighboring frames that are used to form𝐾 stereo pairs for disparity

estimation. This frame selection is critical for estimating disparity

with high accuracy, as this depends on the baseline between cameras.

If the baseline is too short, depth estimation becomes ill-conditioned,

particularly for far objects. On the other hand, wide baselines can

also result in unreliable depth estimates, because of increasing occlu-

sions and deteriorating correspondence quality. We trade off these

considerations by selecting the 𝐾 =11 temporally closest neighbor-

ing frames whose baselines are larger than a minimum baseline

threshold. This parameter depends on the scene and camera path.

We determine it by searching for the minimum baseline at which a

third of the absolute estimated disparities exceed 5 pixels.

3.1.6 Validity Mask Generation. We apply two binary masks to

exclude unreliable depth estimates. The first mask covers the pho-

tographer, which would produce incorrect depth estimates and is

not the target of scene reconstruction. We select these areas manu-

ally, but they could also be segmented automatically. The second

mask covers the left and right edges of the transverse equirectangu-

lar image as depth estimation is ill-conditioned near the epipoles,

which are located at the left and right image edges due to the spher-

ical rectification. We mask out 15% of pixels by width on both the

left and the right edges. We do not include occlusion masks for

two reasons: (1) our disparity estimation network is already trained

in an occlusion-aware manner; and (2) masking out all occluded

OursRAFTGTReference Neighbor

Error map
(RAFT)

Error map
(Ours)

Close up
(Color)

Close up
(RAFT)

Close up
(Ours)

Fig. 5. Accuracy of our spherical disparity estimation on a test scene. Top:
Input spherical stereo pair, ground-truth disparity map (GT), and estimates
by RAFT [Teed and Deng 2020] and our adapted model. Bottom: Close-up
crops of the reference image and absolute disparity error maps (the darker,
the better) on the right. Original RAFT shows less accurate disparity (e.g.,
see green crop) and struggles with highly distorted regions (e.g., see orange
crop), which our adapted model can handle better.

pixels can lead to insufficient depth estimates in regions that are

only observed in the reference frame.

3.2 Spherical Scene Geometry Reconstruction
Given the per-frame spherical depth maps reconstructed in the

previous section, the next step is to extract the surface geometry

of the scene. The point clouds obtained from per-view depth maps

can be used to incrementally reconstruct a surface [Litvinov and

Lhuillier 2013], or fused and denoised [Wolff et al. 2016]. However,

the most popular approach is to fuse all depth maps into a truncated

signed distance function (TSDF) stored in a Cartesian voxel grid

[Curless and Levoy 1996], and to extract the level set surface using

marching cubes [Lorensen and Cline 1987]. However, a voxel grid

becomes inefficient when the camera trajectory is relatively small

compared to the captured scene, because everything is divided into

same-sized voxels, even far-away surfaces that do not require such

a fine resolution. Octrees reduce memory usage by assigning voxels

only where sparse surfaces exist [Zeng et al. 2013]. However, the

size of voxels at the deepest level of the octree is still the same.

To solve this problem, we introduce the spherical binoctree – a

data structure specifically tailored for reconstructing scenes from

multiple spherical depth maps. Each node of the spherical binoctree

stores a TSDF value at its center, and we dynamically allocate nodes

by subdivision when a 3D point is newly observed. We combine

both binary and octree subdivision in one data structure – hence

the name ‘binoctree’. Finally, we generate a triangle mesh using

dual marching cubes [Schaefer and Warren 2005], which extends

marching cubes to octrees.

ACM Trans. Graph., Vol. 41, No. 4, Article 100. Publication date: July 2022.
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3.2.1 Spherical Binoctree Structure. We define our spherical binoc-

tree using spherical coordinates (𝜙, 𝜃, 1/𝑟 ) instead of Cartesian coor-
dinates (𝑥,𝑦, 𝑧), where 𝑟 is the radial distance from𝑂tree, the center

of the octree. Using inverse depth, we can represent the full range of

depth, from nearby to infinitely far away, like the sky. For simplicity,

we explain our spherical binoctree structure in terms of depth. The

octree is centered at𝑂tree, which is the average of all camera centers.

The extent of space covered by the octree is defined by three ranges:

0≤𝜙 <2𝜋 , 0≤𝜃 ≤𝜋 , 𝑟near ≤ 𝑟 <𝑟far, where 𝜙 represents azimuth, 𝜃

the polar angle, and 𝑟 the radius (distance from 𝑂tree), respectively.

Each node of the octree represents a specific spherical frustum that

is defined by six values: (𝜙min, 𝜃min, 𝑟min) and (𝜙max, 𝜃max, 𝑟max).
At the root level, we subdivide space into octants by splitting the

azimuth angle𝜙 into four intervals,

[
0, 𝜋

2

)
,

[
𝜋
2
, 𝜋

)
,

[
𝜋, 3𝜋

2

)
,

[
3𝜋
2
, 2𝜋

)
,

the polar angle into two intervals,

[
0, 𝜋

2

)
and

[
𝜋
2
, 𝜋

]
, and keeping

the radius undivided.

3.2.2 Sphere Volume Division. Our spherical binoctree data struc-
ture is a mixture of binary and octree subdivision of a sphere’s

volume. Our initial spherical binoctree only contains eight nodes,

which require further (potentially recursive) subdivision on demand
according to the reconstructed spherical depth maps. For each valid

pixel in each depth map, we consider the corresponding 3D point 𝑃

and, if necessary, subdivide the octree node it falls into recursively,

to ensure appropriate spatial resolution from all input camera view-

points. As our spherical binoctree mixes angular (𝜙 , 𝜃 ) and spatial

dimensions (𝑟 ), repeated subdivision can lead to elongated nodes in
the radial direction. We address these cases using an alternative

binary subdivision. See Figure 6 for an illustration of the spherical

binoctree and our subdivision policies.

Binary Radial Subdivision Policy. In normal octrees, all axes repre-

sent spatial dimensions, but our𝜙 and 𝜃 axes are angular dimensions.

In this case, repeated subdivision produces increasingly elongated

nodes as the angular extent of nodes shrinks faster than their radial

Otree

0 1

1

1

0

1

1

1

2
2

2

3
3

3

Cref

Dest
P

(a)

(b) (c)

Fig. 6. Our spherical binoctree and subdivision schemes: (a) Illustration of
our spherical binoctree with numbers in each node representing the tree
depth from the root of the octree (located at𝑂tree). The size of a node is a
function of the distance 𝐷est between an observed point 𝑃 and the center
𝐶ref of the capturing camera. (b) Balanced nodes are divided into eight
nodes. (c) Imbalanced (elongated) nodes are only divided radially.

length. To prevent spherical frustums from becoming too elongated,

and to ensure their shapes stay balanced, we introduce a binary sub-

division step along the radial dimension (see Figure 6c). We check

if a spherical frustum is balanced using the condition:

1.4 × (𝜙max−𝜙min)
( 𝑟min+𝑟max

2

)
︸                              ︷︷                              ︸
arc length at 𝑟=(𝑟min+𝑟max)/2

< 𝑟max−𝑟min︸       ︷︷       ︸
radial extent

, (7)

where the constant 1.4 encourages more isotropic node shapes via

subdivision. Note that the symbols in Equations 7 and 8 refer to the

extent of a given spherical frustum. If a node is imbalanced, we split

it into two along the radial direction only. This step is repeated until

the node corresponding to the point 𝑃 is balanced.

Eightfold Subdivision Policy. Assuming the node containing the

point 𝑃 is balanced, we next check whether it is sufficiently small

when observed from the camera’s viewpoint at 𝐶
ref
. For this, we

approximate the spherical frustum, which has a volume of

𝑉
node

=

∫ 𝜙max

𝜙min

∫ 𝜃max

𝜃min

∫ 𝑟max

𝑟min

𝑟2 sin𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙 (8)

=
1

3

(
𝑟3
max

−𝑟3
min

)
(cos𝜃min−cos𝜃max) (𝜙max−𝜙min),

as a sphere of equal volume, which has a radius of 𝑡 = 3

√︁
3𝑉

node
/4𝜋

and subtends a solid angle of

Ω = 4𝜋 sin
2

(𝛼
2

)
for 𝛼 = sin

−1
(

𝑡

𝑑
node

)
, (9)

where 𝑑
node

is the distance between the center of the node and the

capturing camera. While the solid angle Ω is larger than a threshold

𝑇
solid

, we subdivide the node into eight subnodes. For most scenes,

we use𝑇
solid

= 0.0001 sr. We split the angular extents of the node in

the middle, and select the geometric mean of 𝑟min and 𝑟max in the

radial direction, such that the ratio of the lengths of the inner and

outer arcs remains the same.

3.2.3 TSDF Integration. After generating an appropriately subdi-

vided spherical binoctree for every single depth estimate in the

spherical depth maps, we gather all the leaf nodes and start updat-

ing TSDF values. We make two key modifications to the standard

TSDF update procedure [Curless and Levoy 1996] to improve the

quality of the final geometry reconstruction. First, we adapt the

truncation threshold depending on depth, which takes into account

that depth estimation errors increase proportional to depth. Sec-

ond, we introduce a confidence-based weighted TSDF update step

that considers depth and color consistency. We implemented the

TSDF integration in parallel on the GPU, as all operations can be

performed independently.

Depth-dependent Truncation Threshold. A fixed truncation thresh-

old cannot handle the increasing depth error in far regions without

sacrificing quality in close regions. This can lead to large holes in

the geometry, as shown by the wall labeled “4” in Figure 7b. To solve

this problem, we adaptively increase the truncation threshold𝑇trunc
as a function of estimated depth 𝐷est

(see Figure 7c):

𝑇trunc (𝐷est) = 𝑒m𝐷est + 𝑒n, (10)
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Fig. 7. The effect of confidence-based weighting using 𝑤update and adaptive truncation thresholds when updating TSDF values in our spherical binoctree. The
input video contains 1000 frames along a vertical elliptical trajectory in the Sponza scene. (a) Color images and estimated depth maps for frames 227 and 304.
(b)–(e) Meshes reconstructed by our algorithm using all input frames, with different weighting and truncation thresholds. See Supp. Table 3 for error metrics.

where 𝑒m and 𝑒n are slope and offset parameters that are empirically

determined to account for the camera trajectory with respect to the

scene. Note that this truncation threshold linearly increases as the

depth error increases due to the spatial resolution of the camera.

To update the TSDF values stored in the spherical binoctree, we

project the centers of all leaf nodes into each depth map and average

the SDF values if a valid depth value exists at the pixel 𝑝 on the

depth map, and if the estimated depth 𝐷est
exceeds the distance

to the center of the node minus the truncation threshold 𝑇trunc. In

other words, we do not update TSDF values if the node center is

more distant than estimated by more than the threshold 𝑇trunc.

Confidence-based Weighting. Real scenes often contain dynamic

objects, reflections and texture-less regions, which can be problem-

atic when integrating depth estimates from different viewpoints or

timestamps. To handle these problems, we introduce Gaussian-like

weights for proximity, depth consistency, and color consistency. We

penalize viewpoints that are far away and thus capture a point at

lower resolution, based on the estimated depth 𝐷est

𝑖
(𝑝) for a pixel 𝑝

in camera 𝑖 as follows:

𝑤p (𝑖, 𝑝) = exp

(
−

(
𝐷est

𝑖 (𝑝)
)
2

/𝜎p
)
, (11)

where the parameter 𝜎p depends on scene scale and camera trajec-

tory. Larger 𝜎p result in an increased contribution of depth values

from far cameras to the overall weight.

Our depth consistency weight considers the estimated depth

𝐷est

𝑖
(𝑝) for pixel 𝑝 in camera 𝑖 , and its depth in a neighboring view

𝑗 ∈𝑁 (𝑖) after reprojection using 𝜋𝑖→𝑗 (𝑝). However, in most cases,

the distance of a point to both cameras will be different. What is the

same, though, is the distance of the point to the line through the

cameras, which we calculate using

𝐷est

𝑖 (𝑝) = 𝐷est

𝑖 (𝑝) sin𝜙rect (𝑝), (12)

where 𝜙rect (𝑝) is the azimuth angle of 𝑝 in the rectified stereo pair.

To penalize when the reference distance𝐷est

𝑖
(𝑝) and the projected

distance 𝐷est

𝑗
(𝜋𝑖→𝑗 (𝑝)) from the neighbor view 𝑗 are too different,

we define the depth consistency weight as

𝑤
d
(𝑖, 𝑗, 𝑝) = exp

©­«−
(
1 −

𝐷est

𝑖
(𝑝)

𝐷est

𝑗
(𝜋𝑖→𝑗 (𝑝))

)
2

/𝜎
d

ª®¬ . (13)

This weight also handles dynamic objects within a scene. The value

of 𝜎
d
varies per scene as the distance reprojection error is affected

by the reconstructed scale of the scene. We set 𝜎
d
to the mean of

the first frame’s depth map, divided by 1000.

Finally, we quantify color consistency using

𝑤c (𝑖, 𝑗, 𝑝) = exp

(
−



𝐼𝑖 (𝑝) − 𝐼 𝑗 (𝜋𝑖→𝑗 (𝑝))


4
2
/𝜎c

)
, (14)

which penalizes large color mismatches more strongly. We use 𝜎c =

24 for 8-bit color values across all scenes.

The final weight for our TSDF update combines weights from all

neighboring frames of frame 𝑖:

𝑤
update

(𝑖, 𝑝) = 𝑤p (𝑖, 𝑝) ·
∑︁

𝑗 ∈𝑁 (𝑖)
𝑤
d
(𝑖, 𝑗, 𝑝) ·𝑤c (𝑖, 𝑗, 𝑝). (15)

Figure 7 evaluates the impact of this weight on 3D reconstruction.

3.2.4 Surface Mesh Extraction. Finally, we extract a triangular mesh

from the TSDF stored in our spherical binoctree. The irregular octree

subdivision and curved shape of nodes prevent the direct application

of marching cubes [Lorensen and Cline 1987]. However, Schaefer

and Warren [2005] introduced marching cubes on the dual graph of

an octree by connecting the zero-crossing points between adjacent

nodes, regardless of their size or shape. Their approach also gener-

alizes to our spherical binoctree as its dual graph is well-defined,

and TSDF values are stored at the center of each node.

3.3 Texture Atlas Reconstruction
Once we obtain the 3D mesh geometry from our spherical binoctree,

we generate a single texture map based on a tiled projective texture

reconstruction approach. In our acquisition setup, the reconstructed

surfaces are usually visible in more than one frame in the input

video. Therefore, our method searches input frames for the optimal

view for each texture tile using a winner-take-all approach that we
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adapt to the specific constraints of our spherical scene reconstruc-

tion. We reconstruct a tile-based texture map for the surface from

neighboring spherical input views by considering occlusions and

visibility when blending textures.

Since our spherical binoctree is designed to make each node sub-

tend a similar solid angle relative to the input cameras (Section 3.2.2),

all triangles in the reconstructed mesh have approximately the same

size in terms of solid angle. As the solid angle is proportional to

the amount of color information captured at a particular viewpoint,

we allocate a fixed extent of the texture map to each triangle face

while preserving the acquired texture details across the full range

of object distances in the scene. Figure 8b shows an example of the

equilateral triangle tiling texture map.

3.3.1 Equilateral Mesh Unwrapping. Different from popular texture

atlas reconstruction scenarios with perspective input images [Zhou

and Koltun 2014], our spherical texture reconstruction should handle

a wide range of distortion of input images to the global texture space

associated with the spherical geometry. Therefore, we adapt a tile-

based texture data structure [Lee et al. 2020] and specially customize

it to the spherical domain.

To this end, we introduce a mesh unwrapping method using

equilateral triangle tiling with sufficiently low complexity to make it

practical even for large outdoor scenes, while correctly handling the

irregular sizes of binoctree nodes. In our geometry reconstruction

pipeline, a surface far from the camera, such as a distant building,

will be subdivided less and thus result in a largermesh face. However,

it is not necessary to represent its texture at a high resolution, since

the captured color information of distant surfaces is relatively low-

resolution. Instead, we use a tiling of uniformly sized equilateral

triangles as a texture map, which avoids allocating excessive space

for large but distant faces [Lévy et al. 2002] or complicated geometric

parametrization [Sander et al. 2002; Zhou et al. 2004].

Each pixel in each triangle’s texture is potentially seen in every

single input video frame, resulting in a huge number of potential

combinations that are impractical to check completely. Therefore,

we make two simplifying assumptions. First, we select a subset

of 5–20 representative input frames instead of using all 𝑁 input

frames. We do this using 𝑘-means clustering of the camera poses

and selecting the center frames to ensure sufficient observations

to handle occlusion well. Second, we assume that each triangle’s

texture originates from exactly one input view, and we treat the

center of the triangle as the representative for the entire triangle’s

texture to reduce per-pixel computation.

3.3.2 Optimal Texture Selection. For each triangle, wewant to select
the texture from the optimal frame. To this end, we first check which

representative views can see the triangle (i.e., without occlusion),

and then calculate a visibility score for each view, to find the best

one to sample the texture from.

Occlusion Check. We start by projecting the center of a particular

triangle into each reference view, say to pixel 𝑝 . We then check for

occlusions by comparing the depth of the triangle center, 𝐷tri (𝑝), to
the rendered depth map of the reconstructed mesh, 𝐷rend (𝑝), using

(a) Visibility test with 
multiple camera viewpoints

(b) Our final texture atlas

Fig. 8. (a) The optimal frame is selected from multiple viewpoint candidates
using a visibility score in our texture mapping. (b) Optimal textures fill the
tiled equilateral triangle texture map.

the visibility ratio

𝑉 (𝑝) = 𝐷tri (𝑝)
𝐷rend (𝑝)

. (16)

This ratio is close to one if the triangle is visible, and it is greater

than one if the triangle is occluded by a closer triangle, as this leads

to a lower rendered depth𝐷rend (𝑝) compared to the triangle’s depth

𝐷tri (𝑝). We are scoring views differently depending on whether the

triangle is visible or not, so that we can extract textures even for

triangles that are not seen from any view.

Visibility Score. We choose the optimal view for texturing based

on a combination of criteria: (1) the view’s depth estimate should

be consistent with the reconstructed mesh, also nearby, (2) closer

viewpoints are preferable as they resolve textures more finely, and

(3) observations closer to the normal direction minimize projective

distortions. For efficiency, we compute all visibility scores for a view

in parallel using a cube map. Considering the geometric error of

our mesh, the visibility ratio 𝑉 is only a weak indicator. Therefore,

we define a binary mask𝑀 that encodes the consistency between

rendered depth 𝐷rend (𝑝) and the depth 𝐷est (𝑝) estimated via our

occlusion-aware spherical disparity network (Section 3.1):

𝑀 (𝑝) = 1
(
0.9 <

𝐷est (𝑝)
𝐷rend (𝑝)

< 1.1

)
, (17)

where 1 is the indicator function. Regions with inconsistent depth,

where 𝑀 (𝑝) = 0, should also reduce the score of nearby triangles.

We implement this using a soft erosion operation:

𝑀 ′(𝑝) = min(𝑀 (𝑝), 𝑀∗ (𝑝)), (18)

where𝑀∗
is a blurred version of the consistency mask𝑀 . We use a

Gaussian blur with 𝜎 =13 pixels for 960×960 cube-map faces. Our

complete visibility score also relies on the triangle’s normal n, the
direction v to the view, and the distance to the triangle 𝐷tri (𝑝):

𝑆 (𝑝) = n · v
𝐷tri (𝑝)

×
{
𝑀 ′(𝑝) if 𝑉 (𝑝) ≤ 1.02

(𝑀 ′(𝑝) − 2)𝑉 (𝑝) if 𝑉 (𝑝) > 1.02
(19)

Note that we compute different scores for visible (top) and hidden

triangles (bottoms), which are non-negative and negative, respec-

tively. This ensures that the best view is chosen first, even if the

triangle is occluded in all views.
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Fig. 9. Comparison of synthetic reconstruction accuracy with COLMAP [Schönberger and Frahm 2016; Schönberger et al. 2016] and OmniSLAM [Won et al.
2020] for central spherical views. Note that COLMAP’s reconstruction shows artifacts (top), and OmniSLAM’s reconstruction truncates the north/south poles
and distant regions. Our reconstruction is the closest to the ground truth. Refer to Table 3 for depth and color error metrics.

4 RESULTS AND EVALUATION

4.1 Spherical Stereo Depth Accuracy
First, we evaluate the depth accuracy of our spherical stereo method.

We compare two-view depth estimation accuracy with current [Teed

and Deng 2020; Wang et al. 2020a] and classic methods [Hernandez-

Juarez et al. 2016; Hirschmüller 2008]. For this, we rendered 100

rectified spherical stereo pairs with ground-truth depth at 512×1024
resolution from five 3D models not in our training dataset (‘Sponza’,

‘Lone-monk’, ‘San Miguel’, ‘Pabellon_sunset’, ‘Sibenik Cathedral’).

For each of the five models, we render five different stereo pairs at

baselines of {10, 20, 30, 40} cm. Figure 5 shows an example compari-

son with RAFT [Teed and Deng 2020]. In Table 1, we compare the

mean absolute error (MAE), RMSE, and the percentage of bad pixels

with an error of more than 0.1 and 0.4 in inverse depth (lower is

better for all metrics). Our method outperforms all other methods

in every measure. We refer to the supplemental document for a

breakdown by baseline (Table 2) and more results (Section 2.1).

Table 1. Comparison of two-view spherical depth estimation methods and
our method. The columns ‘>0.1’ and ‘>0.4’ show the percentage of bad
pixels that exceed an absolute inverse depth error of 0.1/0.4 [m−1]. Our
method significantly outperforms all others.

Method >0.1 >0.4 MAE RMSE

360SD-Net [Wang et al. 2020a] 52.61 24.22 0.351 0.540

SGBM [Hirschmüller 2008] 15.21 4.66 0.070 0.186

GPU-SGM [Hernandez-Juarez et al. 2016] 16.17 5.12 0.082 0.210

RAFT [Teed and Deng 2020] 11.46 2.43 0.059 0.187

Ours 7.97 0.55 0.035 0.075
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COLMAP OursInput frame

Fig. 10. Comparison of our 3D reconstruction to COLMAP [Schönberger and Frahm 2016; Schönberger et al. 2016]. Left: Input frame as spherical image (top)
and perspective crop (bottom). Center: COLMAP’s reconstructed mesh and textured mesh. Right: Our reconstructed and textured mesh. The top and bottom
input videos are from Bertel et al. [2020]. See our supplemental video and document for additional results and comparisons.

4.2 Memory Efficiency
For effective 3D reconstruction, we devised an adaptive data struc-

ture with non-uniform voxel sizes, which is critically different from

conventional methods. Note that existing voxel-based reconstruc-

tionmethods allocate a uniform voxel size throughout the entire grid.

This means small, less reliable observations of a few pixels could

back-project to a large surface far from the camera. This occupies a

large number of voxels of uniform size, requiring excessive memory,

especially considering the observation’s resolution. In Table 2, we

quantitatively compare our spherical binoctree with a dense voxel

grid, a TSDF-based reconstruction [Nießner et al. 2013], and two

types of octree by converting our spherical input to six perspective
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Table 2. Given the same image and depth sequence as input, our spheri-
cal binoctree is more memory-efficient thanks to adaptively sized voxels.
‘Cartesian octree (naïve)’ divides voxels always until the final level, while
‘Cartesian octree (solid angle)’ stops dividing voxels with the same rule as
our spherical binoctree. The right-most column shows the volume of voxels.

Scene Method # Voxels GB Volume [mm
3
]

Sponza

Dense regular voxel grid 732,721,016 5.46 1,000

VoxelHashing [2013] 23,619,456 0.18 1,000

Cartesian octree (naïve) 110,324,676 2.05 477

Cartesian octree (solid angle) 14,473,670 0.27 60 – 5.1×10
11

Ours 4,273,474 0.08 25 – 4.8×1012

Cathedral

Dense regular voxel grid 80,762,334 0.60 1,000

VoxelHashing [2013] 15,561,728 0.12 1,000

Cartesian octree (naïve) 88,189,529 1.64 477

Cartesian octree (solid angle) 16,035,307 0.30 0.93 – 5.1×10
11

Ours 8,145,273 0.15 0.35 – 5.0×1012

RGBD images (cubemap, using our poses). Note that all baselines

need far more voxels even though their voxels are much larger than

our smallest. Matching the level of detail for close surfaces that our

method provides would require even more voxels, which would

exceed memory capacity.

4.3 Reconstruction Accuracy
We compare our method with two relevant state-of-the-art 3D re-

construction methods: COLMAP [Schönberger and Frahm 2016;

Schönberger et al. 2016] and OmniSLAM [Won et al. 2020]. Even

though these two methods allow for acquiring environment geom-

etry, they are not originally designed to take spherical images as

input, unlike our method that reconstructs a full 3D geometry model

from spherical inputs. To enable a quantitative comparison, we sim-

ulate each method’s expected input by rendering 3D scenes and

use our estimated camera poses. Since COLMAP takes perspective

camera input only, we rendered cube maps with overlapping 120°

fields of view. For OmniSLAM, we simulate their camera rig: four

220° fisheye cameras arranged in the corners of a 30 cm square. The

center of OmniSLAM’s rig followed the same trajectory as the other

renderings.

Using the textured meshes produced by each method, we render

equirectangular color images and depth maps at the center of the

camera path. Figure 9 compares these 3D reconstruction results,

color images and depth maps. We compare the results to the ground

truth on all mesh pixels, and also on the mesh rendered on top of

the original skybox. OmniSLAM’s tracking-based pose estimation

makes it more robust than COLMAP in this regard, although its

reconstruction only covers a limited subset of the vertical field of

view. As Table 3 also shows, our method can accurately reconstruct

the visible geometry while also correctly estimating the texture.

In addition, the low error when estimating depth from our mesh

validates that our spherical binoctree effectively integrates depth

information across multiple frames.

4.4 Reconstruction of Real Scenes
We compare the reconstruction performance of our method on real

scenes with COLMAP [Schönberger and Frahm 2016; Schönberger

et al. 2016] in Figure 10. For both methods, we use the same input

Table 3. Textured mesh reconstruction comparison. For each method, we
render images and inverse depth maps using the reconstructed mesh.
We evaluate the quality of just the mesh pixels (‘Mesh’) and all pixels
(‘Mesh+Skybox’). Completeness (‘Comp.’) is defined as the proportion of
pixels that see the mesh compared to the ground truth. Our textured
mesh shows the highest geometry and texture accuracy while retaining a
high completeness. The large Cartesian octree mesh crashes the texturing
pipeline (out-of-memory). See Figure 9 for visual results.

Depth Color

Comp.

Mesh only Mesh+Skybox Mesh Mesh+Skybox

Methods MAE RMSE MAE RMSE PSNR PSNR SSIM LPIPS %

VoxelHashing 0.025 0.071 0.025 0.070 20.26 21.46 0.840 0.408 97.3

Cartesian octree 0.010 0.024 0.009 0.024 — — — — 100

COLMAP MVS 0.012 0.037 0.011 0.036 22.42 27.16 0.892 0.326 100
OmniSLAM 0.021 0.046 0.134 0.213 13.52 7.74 0.503 0.730 44.9

Ours 0.006 0.018 0.009 0.038 23.91 24.19 0.922 0.142 98.3

videos captured with an omnidirectional video camera, or converted

to cube maps for COLMAP. COLMAP’s reconstruction often con-

tains geometric artifacts caused by Poisson surface reconstruction

[Kazhdan and Hoppe 2013], and the reconstructed texture informa-

tion often suffers from blurriness, due to the inaccurate geometry

reconstructed by COLMAP. In contrast, our method reconstructs

not only high-resolution geometry but also clear texture informa-

tion without losing details, thanks to our high-accuracy geometry

reconstruction. Please see our supplemental video for more results.

5 DISCUSSION
Our proposed approach focuses on short egocentric camera tra-

jectories, but is also applicable for larger camera trajectories. The

binoctree will be divided more finely for close surfaces, and locally

behaves similar to other methods such as Nießner et al. [2013]

while maintaining large voxels for surfaces that were never ob-

served closely. However, the reconstruction quality might degrade

for videos captured with a large camera trajectory because of the in-

crease of depth error caused by photometric inconsistencies, includ-

ing reflections. Our method is not free from limitations as follows.

Dense Depth Maps. Dense depth maps are necessary to reconstruct

3D scenes from passive multi-view stereo input [Schönberger et al.

2016]. While traditional reconstruction methods depend on feature-

based correspondence matching and propagation of sparse depth

values, we directly estimate dense depth maps from spherical dis-

parity estimates. We found that this approach can increase depth

errors near sharp edges or thin structures in a scene, resulting in

the loss of geometric detail (for example, see Figure 12, left).

Consistent Depth. Luo et al. [2020] introduce a method for estimat-

ing consistent per-frame depth maps from a video. They combine a

spatial color difference loss and disparity loss for fine-tuning a depth

estimation network at test time. This approach is preferable to naïve

per-frame depth estimation as it can provide depth maps without

flickering effects caused by geometrical depth inconsistency. We

attempted to adopt this approach in our depth estimation method by

replacing the depth estimation network with an optical flow estima-

tion network, and by extending the loss functions to the spherical

domain. However, we did not observe a consistent increase in the
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(a) Relighting (b) Inserting a virtual object

Fig. 11. (a) Day-to-night relighting of captured scenes using virtual point lights. (b) Inserting virtual objects in the scenes.

accuracy of estimated depth. We hypothesize that this is because

the structure of our optical flow network did not fit with the losses.

Reflective Surfaces. Ourmethod estimates depth frompassive stereo.

When a scene includes reflective surfaces, such as windows and

mirrors, our depth estimation method tends to produce inconsistent

and inaccurate depth maps. Our reconstruction algorithm truncates

these depth values, and thus it is hard to reconstruct the geometry

of reflective surfaces, as shown in Figure 12 (center).

Dynamic Objects. Our confidence-based TSDF integration enables

us to eliminate depth values of moving objects in the scene. We

then search the best frame candidates from the input video inde-

pendently to create a texture atlas. However, our texture mapping

applied on a scene with dynamic objects presents ghosting artifacts,

because it cannot find the correct texture source through dynami-

cally changing visibility. See Figure 12 (right) for example artifacts.

More advanced texture mapping would be interesting future work.

6 CONCLUSION
We have proposed an egocentric 3D reconstruction method, al-

lowing for high-quality geometry and textures even from a short

handheld spherical video captured with a relatively small trajectory

compared to the scene. We fuse all depth maps using a custom-

designed spherical binoctree data structure that divides nodes in

a binary or octree fashion to optimally represent egocentric scene

geometry. We update TSDF values weighted based on proximity,

color and depth consistency, and subject to a depth-dependent trun-

cation threshold. We have demonstrated that the high quality of

our reconstructed 3D geometry and textures improve on the state

of the art both quantitatively and qualitatively. This enables a range

of applications, including novel-view synthesis. We further demon-

strate editing of the scene illumination and inserting virtual objects

seamlessly in the captured scene in Figure 11. For example, various

point light sources are added for the left scene, and virtual objects

are inserted on the right. Please see our supplemental video for

these and more results.

Fig. 12. Example failure cases. Left: Thin objects are hard to reconstruct
due to the lack of depth accuracy. Center: Specular reflections can cause
incorrect depth estimation and mesh reconstruction. Right: Texture recon-
struction can fail for dynamic objects even if mesh reconstruction succeeds.
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