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Fig. 1. OmniPhotos are 360° VR photographs that are casually captured with a single 360° video sweep. Capturing only takes 3–10 seconds and, once processed

into an image-based scene representation with optical flow and scene-adaptive proxy geometry, OmniPhotos can be viewed freely in VR headsets. Please note
that this figure and others in this paper are animated; should they not be playing automatically, please consider viewing this paper with Adobe Reader.

Virtual reality headsets are becoming increasingly popular, yet it remains

difficult for casual users to capture immersive 360° VR panoramas. State-of-

the-art approaches require capture times of usually far more than a minute

and are often limited in their supported range of head motion. We introduce

OmniPhotos, a novel approach for quickly and casually capturing high-

quality 360° panoramas with motion parallax. Our approach requires a single

sweep with a consumer 360° video camera as input, which takes less than 3

seconds to capture with a rotating selfie stick or 10 seconds handheld. This

is the fastest capture time for any VR photography approach supporting

motion parallax by an order of magnitude. We improve the visual rendering

quality of our OmniPhotos by alleviating vertical distortion using a novel

deformable proxy geometry, which we fit to a sparse 3D reconstruction of

captured scenes. In addition, the 360° input views significantly expand the

available viewing area, and thus the range of motion, compared to previous

approaches. We have captured more than 50 OmniPhotos and show video

results for a large variety of scenes. We will make our code available.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image-based rendering; Virtual reality.
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1 INTRODUCTION

The latest virtual reality (VR) head-mounted displays (HMDs) enable

breathtaking immersion thanks to recent technological advances in

near-eye display and tracking technologies [Koulieris et al. 2019].

However, capturing VR photographs that exploit the full immer-

sive potential of VR, in particular including depth cues like motion

parallax, is currently beyond most casual users [Richardt et al. 2019].

State-of-the-art 360° VR photography relies on panoramic light

fields [Overbeck et al. 2018], which require the time-consuming

capture and processing of more than a thousand input photos. This

is clearly beyond the reach of casual end users. Hedman and Kopf’s

Instant 3D Photography approach [2018] reconstructs high-quality

textured meshes from dozens of captured colour+depth images,

with full 360° VR photographs requiring more than a minute of

capture time. In addition, 3D reconstruction remains fragile and

prone to artefacts, e.g. for thin or distant objects in a scene, such as

trees. The MegaParallax approach [Bertel et al. 2019] overcomes this

limitation using image-based rendering with view-dependent flow-

based blending. However, the supported viewing range of motion

(aka head box) is limited by the field of view of the used camera, and

visual distortions are introduced by the basic proxy geometry. No

current 360° VR photography approach simultaneously supports:

(1) quick and easy capture in under 10 seconds, and (2) real-time

VR rendering of 360° environments with (3) high-quality motion

parallax and (4) a head box with 1m diameter.

We introduce OmniPhotos to fill this gap – a new approach for

casual 360° VR photography using a consumer 360° video camera.

By attaching the 360° camera to a rotating selfie stick, as shown

in Figure 1, we can significantly reduce the core capture time to

less than 3 seconds, which enables rapid, casual and robust 360°

VR photography. Static scenes work best, although the fast cap-

ture time reduces artefacts caused by movement in the scene. The

omnidirectional view of 360° cameras also unlocks a significantly

enlarged head box compared to other methods, which is ideal for
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seated VR experiences. We further improve the visual fidelity of

the VR viewing experience by automatically and robustly recon-

structing a scene-adaptive proxy geometry that reduces vertical

distortions during image-based view synthesis. We demonstrate the

robustness and quality of our OmniPhotos approach on dozens of

360° VR photographs captured in seven countries across Europe

and Asia. We further perform extensive ablation studies as well as

quantitative and qualitative comparisons to the state of the art.

2 RELATED WORK

Panoramas. The most common type of VR photography today is

360° panoramas stitched from multiple input views [Szeliski 2006].

However, panoramas generally appear flat due their lack of depth

cues like binocular disparity. This limitation is addressed by omnidi-

rectional stereo techniques [Peleg et al. 2001; Richardt 2020], which

create stereo panoramas from a camera moving on a circular path

[Baker et al. 2020; Richardt et al. 2013], a rotating camera rig for

live video streaming [Konrad et al. 2017], or per-frame from two

360° cameras [Matzen et al. 2017]. The extension of these techniques

to videos using multi-camera rigs [Anderson et al. 2016; Schroers

et al. 2018] is currently the standard format for 360° stereo videos.

While these approaches provide stereo views with binocular dis-

parity, most do not support motion parallax directly – the change

in view as the viewpoint is moved, which is an important depth

cue for human visual perception [Howard and Rogers 2008] and

crucial for feeling immersed in VR [Slater et al. 1994]. Schroers et al.

[2018] first demonstrated parallax interpolation for professionally

captured omnistereoscopic video with a 16-camera rig.

Panoramas with motion parallax. Panoramas can be augmented

by interactively sculpting geometry for projecting the panorama

on [Sayyad et al. 2017]. Similarly, stereo panoramas can be aug-

mented by estimating depth [Bertel et al. 2020; Thatte et al. 2016]

and segmenting the panorama into multiple depth layers [Serrano

et al. 2019; Zhang et al. 2020; Zheng et al. 2007], which enables free-

viewpoint rendering of novel views with motion parallax. The input

images can also be used directly for image-based rendering of novel

views [Bertel et al. 2019; Chaurasia et al. 2013; Hedman et al. 2016;

Lipski et al. 2014]. These approaches are limited to head motion in

the plane of the circular camera trajectory, but using a robot arm

[Luo et al. 2018], a camera gantry [Overbeck et al. 2018], or a spher-

ical 16-camera rig [Parra Pozo et al. 2019], one can capture viewing

directions over the surface of a sphere, which enables 6-degree-of-

freedom (6-DoF) view synthesis using panoramic light fields. These

state-of-the-art capture methods are, however, restricted to profes-

sional usage and not accessible or affordable for casual consumers

interested in practising 360° VR photography. Huang et al. [2017]

present an approach for mesh-based warping of 360° video accord-

ing to sparse scene geometry, but the visual fidelity is limited due

to warping artefacts.

3D reconstruction. Capturing the shape and appearance of objects
or scenes by means of 3D photography has been an active topic of

research for more than 20 years [Curless et al. 2000]; we refer to

Richardt et al. [2020] for an extensive review of the state of the art.

Recent advances exploit the ubiquity of phone cameras for casual

3D photography [Hedman et al. 2017], and use depth maps obtained

from built-in stereo cameras [Hedman and Kopf 2018; Kopf et al.

2019], multi-view stereo [Holynski and Kopf 2018], temporal stereo

[Valentin et al. 2018], or monocular depth estimation [Shih et al.

2020] to reconstruct the scene geometry; similar approaches are

also used to estimate depth maps from 360° images [da Silveira

and Jung 2019; Im et al. 2016; Wang et al. 2020; Zioulis et al. 2019].

Most approaches produce a textured mesh as output, which can be

rendered efficiently even on mobile devices, and supports motion

parallax natively. For 360° VR photography, Hedman et al. [2017]

use fisheye input images, which are stitched into a multilayer, tex-

tured panoramic mesh that can easily be rendered from novel views.

Hedman and Kopf [2018] produce a similar output from narrow

field-of-view RGBD images that are captured with minimal displace-

ment to facilitate their registration into an RGBD panorama. Their

360° panoramic captures take around 100–200 seconds, ten times

slower than our approach. Parra Pozo et al. [2019] estimate per-

view depth maps using a variant of coarse-to-fine PatchMatch with

temporal bilateral and median filtering. All views are rendered as

a separate textured meshes and fused together using a weighting

scheme. This pipeline is optimised for 6-DoF video and real-time

playback. However, accurate 3D reconstruction of unconstrained en-

vironments remains challenging, particularly in uniformly coloured

regions like the sky, or for highly detailed geometry such as trees.

We employ image-based rendering to address these limitations and

optimise for the visual fidelity of results without relying on accurate

3D reconstructions, which are hard to obtain for general scenes.

Learned view synthesis. Deep learning is starting to replace parts

of the view synthesis pipeline or even the entire pipeline. Hedman

et al. [2018] learn blending weights for view-dependent texture map-

ping to reduce artefacts in poorly reconstructed regions. Recently,

multiplane images [Zhou et al. 2018] have set a new bar in terms of

the visual quality of synthesised views from just one to four input

views [Flynn et al. 2019; Mildenhall et al. 2019; Srinivasan et al.

2019; Tucker and Snavely 2020]. Concurrent work generalises this

approach to multi-sphere images for rendering novel views from a

360° stereo video [Attal et al. 2020] or 46 input videos [Broxton et al.

2020], respectively. Other approaches use point clouds [Meshry et al.

2019] with deep features [Aliev et al. 2020; Wiles et al. 2020], voxel

grids [Nguyen-Phuoc et al. 2019; Sitzmann et al. 2019a] or implicit

functions [Mildenhall et al. 2020; Sitzmann et al. 2019b] to learn

view synthesis; we refer to Tewari et al. [2020] for a recent survey

on neural rendering. The main limitation of these approaches is

that they do not meet the performance requirements of current VR

headsets (2 views × 2 megapixels × 80Hz = 320MP/s), with some

techniques being four orders of magnitude too slow (e.g. NeRF:

1008×756/30 𝑠 =0.025MP/s). Using shaders for view-dependent tex-

ture mapping with flow-based blending, our approach consistently

exceeds the required performance on an off-the-shelf laptop for a

seamless, high-quality VR experience.

3 OMNIPHOTO PIPELINE

Our goal is to enable casual 360° VR photography of mostly static

environments that is fast (less than 10 seconds), easy and robust. Our

approach follows the general structure of the VR capture pipeline
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Fig. 2. Overview of the main algorithm stages and their outputs, from capture, over reconstruction, optical flow and proxy fitting, to rendering.

[Richardt et al. 2020] in terms of capture (Section 3.1), preprocessing

(Section 3.2) and real-time rendering (Section 3.3). We specifically

tailor the pipeline stages to optimise for casual 360° VR photography:

(1) We propose the fastest capturing procedure so far (Section 3.1)

by using a consumer 360° video camera on a rotating selfie

stick (although handheld capture is also possible).

(2) We introduce a scene-adaptive deformable proxy geometry

fitting step in Section 4, which visibly reduces vertical distor-
tion [Anderson et al. 2016; Shum and He 1999] in our results.

3.1 Casual capture of 360° VR photographs

The input to our approach is a single 360° video that is captured

by a consumer 360° camera moving on a roughly circular path (see

Figure 2). Specifically, we ensure that one of the fisheye lenses of

the 360° camera is pointing radially outward, as this avoids potential

stitching artefacts within the outward view. While the camera path

is similar to earlier work [Bertel et al. 2019; Peleg et al. 2001; Richardt

et al. 2013], there are two unique advantages to using a 360° camera

instead of a normal perspective camera:

(1) The increased field of view significantly expands the sup-

ported viewing area (aka ‘head box’) for view synthesis com-

pared to perspective input views.

(2) Thanks to the omnidirectional 360° views, most of the scene

is visible in all video frames, which enables more robust cam-

era pose estimation and scene reconstruction [Hedman et al.

2017], as inside-out perspective camera views are challeng-

ing to reconstruct with existing structure-from-motion tools

[Bertel et al. 2019].

The 360° camera can be handheld, on a stretched arm, with the

person rotating on the spot to capture the full 360° environment with

motion parallax from multiple perspectives. This process usually

takes about 10 seconds for a full rotation. We found that we can

further speed up this capture process using a rotating selfie stick, to

about 1.7 seconds per revolution on average. In addition, the rotating

selfie stick ensures a smoother, more repeatable camera motion that

is closer to an ideal circle, which reduces view interpolation artefacts

in the final results. Our input video swings have an average length of

14.1±5.6 seconds, which includes set-up time, rotation speed-up, 3–5

revolutions, slow down and stopping the recording. Both capture

approaches are suitable for casual users with little experience, as

they are easily learned and quickly performed.

We use an ‘Insta360 ONE X’
1
360° camera for most of our results.

We captured most videos at 4K (3820×1920) resolution at 50Hz, and

some videos at 3K (3008×1504) at 100Hz or 5.7K (5760×2440) at
30Hz to compare the trade-off between spatial resolution and the

number of images per camera circle. The 4K 360° video has a resolu-

tion of 10.6 ppd (pixel per degree), which approximately matches

the angular resolution of current-generation VR head-mounted dis-

plays at 11–14 ppd (e.g. Oculus Rift S, VIVE Pro); 5.7K 360° video

at 16 ppd slightly exceeds current VR HMDs. We generally use an

exposure time of 1/2000 seconds, or less, to minimise motion blur
2

and rolling shutter artefacts. We use automatic white-balance and

an ISO level of ⩽400 to reduce noise. We observed no colour shifts

due to automatic white-balancing.

3.2 Preprocessing of 360° VR photographs

The 360° video captured by the user in the previous section now

needs to be preprocessed to enable the real-time VR rendering de-

scribed in Section 3.3. This process starts with 360° video stitching

and stabilisation, followed by camera reconstruction, loop selection,

frame sampling, optical flow computation, and finally reconstruct-

ing our novel scene-adaptive proxy geometry.

3.2.1 360° video stitching. Most consumer 360° cameras record

videos on-device in a proprietary format that combines the fish-

eye videos, audio track(s) and some metadata, such as data from

built-in IMUs (inertial measurement units). These proprietary videos

can then be stitched using vendor-specific software to produce 360°

videos with equirectangular projection [Lee et al. 2016; Perazzi et al.

2015; Szeliski 2006], the most common monoscopic 360° video for-

mat. Working directly with stitched 360° videos means that our

approach in principle supports videos stitched in any way, by any

software, making it independent from any specific vendor and thus

more accessible to casual users. The stitching software we use also

offers a stabilised stitching option
3
that removes almost all rotational

1
https://www.insta360.com/product/insta360-onex (last accessed 6 May 2020)

2
Horizontal motion blur can be approximated using

image-width×exposure-time

rotation-time
, which is

about one pixel for a 4K video with 1/2000 s exposure time and 2 s rotation time. Slower

rotations, e.g. handheld, allow for increased exposure times at the same level of blur.

3Insta360 Studio 2019 calls this mode FlowState™ stabilisation. We use version 3.4.2.
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camera motion while keeping vertical lines upright, presumably us-

ing IMU data recorded by the camera. This stabilisation significantly

reduces the average motionmagnitude between video frames, which

is beneficial for tracking and optical flow estimation, as argued by

Schroers et al. [2018].

3.2.2 Camera reconstruction. We estimate camera poses for each

frame of the stitched 360° video, and reconstruct a sparse 3D point

cloud of the scene using OpenVSLAM [Sumikura et al. 2019], an

open-source visual SLAM approach that natively supports equirect-

angular 360° video. Features are tracked in an omnidirectional fash-

ion, which helps overcome reconstruction challenges related to

small-baseline normal field-of-view inside-out video inputs [Bertel

et al. 2019; Hedman et al. 2017]. We perform the camera reconstruc-

tion in two passes: we first track the complete video to obtain a

globally consistent 3D point cloud, and then localise all video frames

with respect to the global 3D point cloud in a second pass, to obtain

a globally consistent reconstruction of camera poses (see Figure 2).

3.2.3 Loop selection. We manually select a looping sub-clip of the

video that jointly optimises the following criteria: (1) smooth camera

motion over time to avoid artefacts caused by jerky motion; (2) as-

continuous-as-possible looping, i.e. smooth camera motion across

the cut, to prevent a visible seam in the result; and (3) if a seam

is unavoidable, it should be as hidden as possible to minimise its

impact, e.g. in a less interesting direction of the scene (far away

or uniform textures), not ‘cutting’ through people. The first two

criteria could be optimised automatically, but we found that the

last criterion still requires manual input, so we perform the loop

selection manually. Finally, we scale the global coordinate system

such that the radius of the camera circle matches the measured or

estimated real-world dimensions, and centre the circle at the origin

without loss of generality.

3.2.4 Frame sampling. We observed that videos captured at 50Hz

with the rotating selfie stick produce loops of 84±14 frames (aver-

aged over 38 videos). However, our handheld videos produce loops

of 300–500 frames, depending on frame rate, as the photographer is

rotating moderately slowly (~10 s per loop). To reduce space require-

ments and computation time in these cases, we select a subset of

around 90 frames with approximately uniform angular spacing. We

evaluate the impact of further downsampling to 45, 30 or 15 frames

in Table 1.

3.2.5 Optical flow. Our view synthesis approach in Section 3.3

relies on optical flow between pairs of neighbouring images. We

precompute optical flow fields using FlowNet2 [Ilg et al. 2017] and

DIS flow [Kroeger et al. 2016] directly on the stitched equirectangu-

lar images. Note that these methods were designed for perspective

images. They work well on the pseudo-perspective equatorial re-

gion of equirectangular images, but degrade near the poles due to

the severe distortions. To ensure consistent optical flow across the

azimuth wrap-around, we repeat a vertical strip of the image just be-

yond the left and right edges of the equirectangular projection, and

crop the computed flow fields back to the original size. In practice,

we find that flow fields at half the image resolution are sufficient

for high-quality view synthesis at run time using view-dependent

flow-based blending [Bertel et al. 2019]. Our approach is agnostic to

the specific optical flow technique that is used, and thus automati-

cally benefits from future improvements in optical flow computation

techniques.

3.2.6 Proxy fitting. We compute a scene-adaptive proxy geometry

by fitting a deformable spherical mesh to the reconstructed 3Dworld

points in Section 4. This approach is inspired by Lee et al.’s Rich360

video stitching method [2016], which demonstrated improved align-

ment and blending of input videos. Our proxy fitting technique

is specifically tailored for our casually captured OmniPhotos, and

robustly produces scene-adaptive proxy geometry that more ac-

curately represents the geometry of the captured scene than the

simple planar or cylindrical proxy used before [Bertel et al. 2019;

Richardt et al. 2013]. This step noticeably reduces visual distortions,

as shown in our results.

3.3 Rendering 360° VR photographs

Our 360° VR photography viewer generates new viewpoints in real

time given the location and orientation of the user’s headset. Our

rendering approach is based on the MegaParallax image-based ren-

dering method [Bertel et al. 2019], which we extended to equirectan-

gular images (see Figure 3a). Each desired new view ID is rendered

by first rasterizing the proxy geometry, yielding scene points X, and
then computing the colour of each pixel xD independently and in

parallel. Specifically, we use the direction of each pixel’s camera ray

rD in the desired output view to find the optimal input camera pair

to colour the pixel, and then project the proxy 3D point X into both

cameras using equirectangular projection giving image projections

xL and xR for the left and right view, respectively. Finally, we apply

MegaParallax’s view-dependent flow-based blending (see Figure 3b)

using the optical flow fields, F̂LR and F̂RL, while explicitly handling

the azimuth wrap-around in the flow-based blending computations.

We implement our VR photography viewer using OpenVR, which

at the time of writing supported a variety of consumer headsets

based on SteamVR, Oculus and Windows Mixed Reality VR, with

the same code base. We render stereoscopic views using the eye

transformation matrices provided by OpenVR, which encode the

camera poses for the left- and right-eye cameras.

(a) (b)

proxy

…

…

Fig. 3. Illustration of our rendering approach using equirectangular input

images (shown in blue and orange). (a) Each pixel xD of the desired image

(in green) is computed using a view-dependent blending of two reprojected

pixel coordinates (small coloured circles) in the nearest two viewpoints. (b)

We compute flow-adjusted pixel coordinates using equirectangular optical

flow (small coloured squares), similar to MegaParallax [Bertel et al. 2019].
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4 SCENE-ADAPTIVE DEFORMABLE PROXY FITTING

We represent the sphere mesh S = (𝑉 , 𝐹 ) in terms of vertices𝑉 and

triangle faces 𝐹 . Given the spherical nature of the mesh, vertices

are naturally defined in spherical coordinates (𝜃, 𝜑, 𝑟 ). We initialise

the vertices 𝑉 in a regular grid configuration of size 𝑚 × 𝑛, i.e.

𝑉 = {v𝑖 }𝑚×𝑛
𝑖=1

, with uniform spacing along the azimuth and polar

angles, and regularly tessellated triangle faces 𝐹 . In the following, we

formulate an energy minimisation that deforms this sphere mesh by

adjusting the vertex radii, while keeping their angular coordinates

and their triangle connectivities fixed to ensure the problem is well-

conditioned and edges are not collapsing. Lee et al. [2016] found that

optimising vertex radii directly may lead to unstable results with

negative or very large values, which they address using additional

1D partial derivative terms. Instead, we parametrise our optimisation

in terms of inverse depth, 𝑑 (p) = 1/∥p∥, which helps regularise the

scale of variables in the optimisation [Im et al. 2016], particularly

for far-away points [Civera et al. 2008].

Our energy formulation consists of four terms:

argmin

𝑉

𝐸
data

(𝑃,𝑉 ) + 𝐸
smooth

(𝑉 ) + 𝐸
pole

(𝑉 ) + 𝐸prior (𝑉 ), (1)

where 𝑃 is the set of reconstructed 3D world points, and 𝑉 the

vertices of the sphere mesh.

Data term. We would like to deform the sphere mesh to optimally

approximate the set 𝑃 of 3D points, which means minimising the

distance between points and triangles. By construction, as the mesh

is centred at the origin, the ray from the origin through any point p
intersects one or more triangles

4
, which can be identified based on

the spherical coordinates of the point p and the grid of vertices 𝑉 .

Let’s denote the intersected triangle

using 𝑓 (p) = {v𝑎, v𝑏 , v𝑐 } and the in-

tersection point as p̂, expressed in

barycentric coordinates with respect

to the triangle vertices, so we canmin-

imise the distance between all points

p and their triangle intersections p̂:

𝐸
data

(𝑃,𝑉 ) = 𝜆
data

|𝑃 |
∑
p∈𝑃

𝜌

©­­­«







𝑑 (p) − 𝑑

©­­«
p̂∑

v∈𝑓 (p)
𝑏 (p, v)v

ª®®¬








2ª®®®¬ , (2)

where 𝑏 (p, v) is the barycentric coordinate of p with respect to

the vertex v ∈ 𝑓 (p), computed in terms of the spherical angles

(𝜃, 𝜑), such that p̂ =
∑
v∈𝑓 (p) 𝑏 (p, v)v, and 𝜆

data
is the weight of

the data term. In addition, we introduce a robust loss function 𝜌 (𝑥)
to make the optimisation more robust to outlier 3D points, which

are unavoidable in current SLAM techniques. Specifically, we use a

scaled Huber loss (with scale factor 𝜎):

𝜌 (𝑥) =
{
𝑥 𝑥 ⩽ 𝜎2

2𝜎
√
𝑥 − 𝜎2 𝑥 > 𝜎2

(3)

4
If the ray intersects an edge or a vertex, we can pick any adjacent triangle, as the

resulting energy formulation is practically identical: one or two vertices will have

barycentric coordinates of zero and thus not contribute to the energy.

Smoothness term. We use a Laplacian smoothness term to encour-

age smoothly varying radii within the mesh:

𝐸
smooth

(𝑉 ) = 𝜆
smooth

|𝑉 |
∑
v∈𝑉







𝑑 (v) − ∑
w∈𝑁 (v)

𝑑 (w)
|𝑁 (v) |








2

, (4)

where 𝑁 (v) denotes the set of vertices neighbouring v: (1) non-
polar vertices have four neighbours, along their azimuth/polar angle

isocontours, and (2) polar vertices have two non-polar neighbours,

on opposite sides of the sphere (same elevation, with Δazimuth = 𝜋 ).

This results in 2D Laplacian losses everywhere outside the poles,

and 1D Laplacian losses across both poles.

Pole term. In our sphere mesh representation, we have multiple

vertices at the pole (the first and last ‘row’ of vertices correspond to

the North and South pole, respectively). We constrain a pole vertex

v and its right neighbour v to be close to each other using

𝐸
pole

(𝑉 ) = 𝜆
smooth

|𝑉 |
∑

v∈𝑉poles

∥𝑑 (v) − 𝑑 (v)∥2 . (5)

Prior term. To handle large regions of the mesh without any 3D

points, we add a weak prior term that attracts each vertex towards

the mean inverse depth 𝑑prior of all points 𝑃 :

𝐸prior (𝑉 ) =
𝜆prior

|𝑉 |
∑
v∈𝑉



𝑑 (v) − 𝑑prior


2

. (6)

Implementation. In practice, we replace each residual ∥𝑎 − 𝑏∥ in
Equations 2 and 4 to 6 with a normalised residual



𝑎 − 𝑏

𝑎 + 𝑏





 (7)

that cancels out any global scale factor, as
(𝑘𝑎)−(𝑘𝑏)
(𝑘𝑎)+(𝑘𝑏) = 𝑎−𝑏

𝑎+𝑏 . This en-
sures that the same globally optimal solution is found regardless of

different scale factors due to varying units of length. We implement

this optimisation using the Ceres non-linear least squares solver

[Agarwal et al. 2012], and choose the sparse Cholesky solver to

exploit the sparse structure of the energy with thousands of points.

The optimisation stops when |Δcost| /cost < 10
−6
, or after 100 itera-

tions. For the initial solution, we set all vertices to the mean inverse

depth of all points; more sophisticated schemes like a hemisphere

with a ground plane are possible. We evaluate a range of parameter

values in Figure 9 and Table 1, and use the following parameter

values for all our results: 𝑚 = 160, 𝑛 = 80, 𝜆
data

= 1, 𝜎 = 0.1,

𝜆
smooth

= 100, 𝜆prior = 0.001.

5 RESULTS AND EVALUATION

Figure 4 shows 30 OmniPhotos we captured and processed using

our approach. Three of these were taken handheld (Cathedral,

Shrines 1+2), with the majority (90%) captured using our rotating

selfie stick with an average loop length of 1.2–1.8 seconds. The selfie

stick is telescopic, which allows for capture radii between 33 and

100 cm, with about 63% at 55 cm and 27% at 78 cm.

In this section, we show qualitative results and comparisons,

perform quantitative evaluation and ablation studies, and finally

discuss the computational performance of our approach. Our results

are best appreciated and evaluated in motion, which gives a better
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Alley (89 images) Ballintoy (94 images) Beihai Park (80 images) Cathedral (84 images) Circus (113 images) Circus Trees (94 images)

Coast (84 images) Crescent (85 images) Dark Hedges (116 images) Field (80 images) Green (82 images) Hillside (95 images)

Hilltop (126 images) Jingqingzhai (87 images) Krämerbrücke (57 images) Mura del Prato (98 images) Nunobiki 1 (72 images) Nunobiki 2 (81 images)

Parade Gardens (88 images) Secret Garden 1 (77 images) Secret Garden 2 (95 images) Ship (71 images) Shrines 1 (91 images) Shrines 2 (118 images)

Sqare 1 (74 images) Sqare 2 (73 images) Temple 1 (90 images) Temple 2 (86 images) Temple 3 (72 images) Wulongting (96 images)

Fig. 4. Datasets shown in our paper and supplemental material. Slightly cropped for visualisation.

impression of the visual experience. To this end, we include some

animated figures in our paper that can be viewed using Adobe Reader.
We further include extensive visual results and comparisons in our

supplemental material and video.

5.1 Comparative evaluation

The approaches closest to ours, Bertel et al.’s MegaParallax [2019]

and Luo et al.’s Parallax360 [2018], also use image-based rendering

with flow-based blending to synthesise novel views in real time.

However, they rely on basic proxy geometry, which causes vertical

distortion artefacts in nearby regions, as illustrated in Figure 5.

Our scene-adaptive deformable proxy geometry deforms to fit the

scene more closely, which greatly reduces these vertical distortion

artefacts, as visible in Figure 6 and our supplemental material.

We next compare to Casual 3D Photography [Hedman et al. 2017].

Their 360° 3D photos were reconstructed from around 50 fisheye

DSLR photos, which take about one minute to capture, an order

of magnitude slower than our approach. Their 3D reconstruction

approach works well for textured scenes, but fails for fine geometry

like tree branches, or uniformly coloured regions like the sky, for

which accurate depth estimation and 3D reconstruction remain open

problems. As their implementation is not available but their datasets

are, we process one of their two camera circles (about 25 images)

with our approach. To adapt their fisheye images to our approach, we

first undistort them to equirectangular images and then stabilise the

views by rotating them inversely to the camera orientations. Figure 7

shows that our image-based rendering approach does not require a

highly accurate 3D reconstruction for convincing view synthesis

from the same input. Monocular 3D photography approaches [Kopf

et al. 2019; Shih et al. 2020] also tend to fail for complex geometry,

as shown in Figure 8. Our OmniPhotos achieve better visual results

Coarse
proxy

(a) coarse proxy geometry

(b) scene-adaptive proxy geometry Adaptive
proxy

Fig. 5. Coarse proxy geometry (a) introduces vertical distortion as the input

cameras are closer to the object than the viewing location (the eye). The

red face, as seen by the camera, appears vertically stretched (blue face)

when rendered using the coarse proxy geometry for a viewpoint behind the

camera. (b) Our scene-adaptive proxy geometry deforms to fit the scene

better, which strongly reduces vertical distortion.

thanks to multi-view input and the combination of scene-adaptive

proxy geometry and flow-based blending for aligning texture details.

Our next comparison is to Serrano et al.’s approach for adding

motion parallax to 360° videos captured with a static camera [2019].

As their approach takes as input a 360° RGBD video, we render an

equirectangular image and depth map from Hedman et al.’s datasets

using Blender and repeat this 360° RGBD frame to create a (static)

360° RGBD video. The resulting static scene does not play to their
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Parallax360 [Luo et al. 2018] MegaParallax [Bertel et al. 2019] Our approach

Fig. 6. Comparison of image-based 360° VR photography techniques for a virtual camera moving on a circular path. Our result reduces vertical distortion

visibly, as can be seen in the table benches in the top row. This is an animated figure, please view with Adobe Reader if it does not play. Parallax360 [Luo

et al. 2018] interpolates views on the capture circle, but not inside of it for the virtual camera path. MegaParallax [Bertel et al. 2019] generates views that

suffer from vertical distortion, which distorts motion parallax. Our results show clear improvements in the quality of view synthesis and motion parallax.

Casual 3D Photography [Hedman et al. 2017] 360° Motion Parallax [Serrano et al. 2019] Our approach

Fig. 7. Comparison to Hedman et al.’s Casual 3D Photography [2017] and Serrano et al.’s Motion Parallax for 360° RGBD Video [2019] on two datasets from

Hedman et al. [2017]. 3D reconstruction works well for the highly textured Library scene (top), but struggles with the thin tree branches and distant clouds in

the BoatShed scene (bottom). Green regions are holes in the textured mesh. For Serrano et al.’s approach, we use colour and depth from Hedman et al.’s

results, which works well for foreground objects with accurate depth, but not for occluded regions that are challenging to fill from the monocular 360° input.

Our approach works well for both datasets, but shows some flow warping artefacts due to the undersampled input views (only 25 views).
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Table 1. Quantitative comparison of baseline methods (top) and ablated versions of our approach (bottom). Numbers are mean±standard error; ‘▲’ means

higher is better, ‘▼’ means lower is better. ‘GT’ indicates ground truth, and ‘*’ a modified proxy geometry. Please see Section 5.2 for a detailed description.

Baseline/Ablation Model Images Proxy LPIPS▼ SSIM▲ PSNR▲

MegaParallax [Bertel et al. 2019] 90 cylinder 0.169±0.002 0.750±0.003 21.83±0.12
MegaParallax [Bertel et al. 2019] 90 plane 0.181±0.002 0.737±0.003 21.45±0.12
Parallax360 [Luo et al. 2018] 90 cylinder 0.207±0.003 0.711±0.003 20.75±0.11
Our complete method 90 ours 0.059±0.001 0.867±0.002 28.02±0.09
0) Our method (ground-truth inputs) 90 GT 0.041±0.000 0.905±0.001 30.08±0.11
1) No robust data term 90 ours* 0.062±0.001 0.859±0.002 27.64±0.10
2) No normalised residuals 90 ours* 0.072±0.001 0.854±0.002 27.30±0.10
3) Optimising depth + no normalised residuals 90 ours* 0.073±0.001 0.853±0.002 27.28±0.10
4) Optimising depth (not inverse) 90 ours* 0.059±0.001 0.867±0.002 28.01±0.10
5) DIS flow [Kroeger et al. 2016] 90 ours 0.060±0.001 0.865±0.002 27.98±0.09
6) No flow (linear blending) 90 ours 0.059±0.001 0.868±0.002 28.03±0.09
7a) Low-resolution proxy (𝑚=80, 𝑛=40) 90 ours* 0.067±0.001 0.843±0.002 27.07±0.09
7b) High-resolution proxy (𝑚=240, 𝑛=120) 90 ours* 0.064±0.001 0.867±0.002 27.78±0.10
8a) Less smooth (𝜆

smooth
=10) 90 ours* 0.068±0.001 0.866±0.002 27.70±0.10

8b) More smooth (𝜆
smooth

=1000) 90 ours* 0.064±0.001 0.849±0.002 27.31±0.09
9a) Fewer images (1 view per 8°) 45 ours 0.061±0.001 0.864±0.002 27.96±0.09
9b) Fewer images (1 view per 12°) 30 ours 0.063±0.001 0.862±0.002 27.90±0.09
9c) Fewer images (1 view per 24°) 15 ours 0.071±0.001 0.855±0.002 27.44±0.09

method’s strength of propagating background information behind

dynamic objects. Please see Figure 7 and our supplemental video.

5.2 Quantitative evaluation

We quantitatively evaluate and compare our OmniPhotos approach

to the most closely-related baseline methods [Bertel et al. 2019; Luo

et al. 2018], and validate our design choices and parameters using

an extensive ablation study in Table 1. We perform this evaluation

in the spirit of virtual rephotography [Waechter et al. 2017] on a

synthetic test set of five scenes (Apartment0, Hotel0, Office0,

Room0, Room1) from the Replica dataset [Straub et al. 2019]. Specif-

ically, we render synthetic equirectangular images on a camera

circle with a radius of 0.5m as input for the various methods, and

we evaluate cubemap views generated by each baseline/ablation

at 69 locations inside the capture circle, on a 10 cm Cartesian grid.

We do not evaluate the up/down views to focus our evaluation on

the region near the equator, where viewers tend to fixate when

exploring panoramas [Sitzmann, Serrano et al. 2018]. For each lo-

cation, we render 512×512 cube maps, and compare the generated

view to the ground truth using structural similarity index (SSIM;

Wang et al., 2004), peak signal-to-noise ratio (PSNR), and the LPIPS

perceptual similarity measure [Zhang et al. 2018]. We report the

maximum value within a shiftable window of ±1 pixel. Note that
this evaluation uses indoor spaces whereas our real OmniPhotos

were all captured outdoors (Figure 4).

Our OmniPhotos quantitatively outperform MegaParallax and

Parallax360 by a large margin, in addition to the clear qualitative

improvement visible in Figure 6 and our supplemental material. We

next evaluate our method on ground-truth camera poses and proxy

geometry (0) to test the upper limit of our approach. In the next
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[
2
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0
]

Fig. 8. Current 3D photography approaches, such as Shih et al.’s, struggle

with complex scenes like the pillars (left), as well as fine geometry, like leaves

(centre) or a rope (right). Our approach succeeds due to our image-based

rendering approach. Please see the animated figure for full effect.

rows, we replace our robust data term with a plain L2 loss (1), re-

move our normalised residuals (2), and use depth instead of inverse

depth (4), each of which reduces performance. Using depth instead

of inverse depth (3), DIS flow (5) or no flow (6), achieves comparable

performance to our approach. Row 3 shows that depth and inverse

depth perform similarly when using normalised residuals. This sug-

gests that using inverse depth and using normalised residuals are

complimentary techniques for regularising the scale of variables

during the optimisation. The normalised residuals have the addi-

tional benefit that one set of parameter values works for both depth
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Fig. 9. Evaluation of robustness and parameter choices for different versions of our scene-adaptive deformable proxy fitting on five ground-truth scenes

(Apartment0, Hotel0, Office0, Room0, Room1) from Replica [Straub et al. 2019]. We measure reconstruction accuracy using RMSE in cm, see Section 5.2.1 for

details. The shaded areas indicate the standard error of the mean. We compare Huber versus L2 data loss (Equation 2), optimisation in terms of depth or

inverse depth (disparity), and standard residuals (‘sres.’) versus our normalised residuals (‘nres.’, Equation 7). Left: Our proxy fitting technique (dark green

line) is the most robust to an increasing number of outlier 3D points. The arrow indicates the level of outliers we assume for the following comparisons.

Centre and right: Our chosen smoothness weight of 𝜆
smooth

= 100 and robust loss scale factor 𝜎 = 0.1 (indicated by arrows) are close to the global minimum

reconstruction errors, and empirically work better for outdoor scenes that have more depth complexity than the indoor rooms of Replica. The light green line

shows that standard residuals do work in practice, but the optimal value of the robust loss scale factor 𝜎 will depend on the scale of the scene.

and inverse depth, despite their scale differences. Changing the reso-

lution (7) or smoothness (8) of the proxy geometry results in a drop

in performance. Reducing the number of input views (9) steadily

reduces performance, with 45 input images almost matching the

performance of 90 input views.

5.2.1 Proxy accuracy. In addition to the visual quality of generated

views, we also evaluate the accuracy of our deformable proxy fitting

in Figure 9. This experiment evaluates the robustness and parameter

choices for different versions of our scene-adaptive deformable

proxy fitting on five ground-truth scenes from the Replica dataset

[Straub et al. 2019]. We render 1920×960 synthetic equirectangular
depth maps and downsample them using area averaging to 80×40 =

3200 3D points, to approximately match the number of 3D points we

usually obtain fromOpenVSLAM [Sumikura et al. 2019]. To simulate

typical SLAM noise and outliers, we add ±2 cm uniform noise to all

3D point locations, and add 25%=800 outlier points sampled from a

10-metre cube centred on the scene. We measure the reconstruction

quality of the proxy geometry using RMSE per vertex of the spherical

depth map, in cm, averaged over 10 runs for each of the five scenes.

Figure 9 shows that our proposed approach, with robust Huber data

loss on inverse depth and normalised residuals, performs best with

increasing number of outliers. Our default parameter values, which

we use for all our OmniPhotos, can also be seen to produce results

close to the global minimum, in terms of reconstruction error, within

the explored design space. We also observed that the quality of the

proxy geometry increases with the number of (inlier) scene points

that can be used to guide the deformation process, for example using

sparse COLMAP reconstructions [Schönberger and Frahm 2016] or

dense multi-view stereo reconstructions [Parra Pozo et al. 2019].

5.3 Performance

Freshly captured OmniPhotos can be processed in about 30–40

minutes on a standard computer (3GHz 8-core CPU, 16GB RAM,

NVIDIA GeForce RTX 2060). For a typical 9-second 360° video with

3840×1920 at 50Hz (450 frames total, 90 frame loop), these are the

major preprocessing steps:

• Stabilised 360° video stitching with CUDA: ~12 seconds

• Two-pass OpenVSLAM reconstruction: ~3minutes

• Blender visualisation import: ~15minutes

• Manual loop selection: ~5minutes

• Reading images & other IO: ~20 seconds

• Scene-adaptive proxy fitting: ~10 seconds

• FlowNet2 / DIS flow: ~10minutes / ~20 seconds

Importantly, the reconstruction with OpenVSLAM is about two

orders of magnitude faster than with COLMAP. The unoptimised

size of preprocessed OmniPhotos is dominated by the precomputed

optical flow fields (14MB/frame), followed by the input images

(~2MB/frame) and the proxy geometry (0.8MB). For a typical dataset

with 90 frames, this sums up to about 1.4 GB all-in. Our viewer loads

such a dataset from SSD into GPU memory in about 20 seconds.

Rendering of 1920×1080 views consistently takes less than 4.16ms

(240Hz), and VR rendering is performed at the 80Hz display rate of

an Oculus Rift S HMD, for a smooth and immersive VR experience.

6 DISCUSSION

Applications. OmniPhotos are a great new way to reliably cap-

ture immersive 3D environments for casual to ambitious consumers

as well as professional users. OmniPhotos can capture personal

memories, for example on holidays, or group photos on family occa-

sions. It would be interesting to see how people could create stories

by concatenating multiple OmniPhotos. In terms of professional
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applications, OmniPhotos are ideal for virtual tourism, which lets

people explore far-away places from the comfort of their own home.

OmniPhotos would also be useful for real estate scenarios to capture

outdoor spaces or individual rooms.

Resolution vs frame rate. As discussed in Section 3.1, we captured

input videos with different resolutions and frame rates to evaluate

the trade-off between spatial resolution and the number of images

per camera circle. We were originally aiming to capture more than

100 views per camera circle, but our new scene-adaptive proxy

geometry has significantly reduced the number of required input

views from 200–400 [Bertel et al. 2019] to 50–100 for our approach

(see Table 1, row 9). Visually, the 5.7K videos produce the highest-

fidelity VR photos, even when downsampled to 4K. The native 4K

resolution tends to be slightly blurry, as it is the result of stitching

two 2K×2K fisheye images into a 4K×2K equirectangular image.

Finally, the 3K videos look noticeably blurry in the final result.

Viewing area analysis. Our rendering approach is modelled after

MegaParallax [Bertel et al. 2019] and we can therefore benefit from

their theoretical analysis of the supported viewing area (aka head

box). They showed that the horizontal translation 𝑥 is limited to

𝑥 < 𝑟 sin
𝛾
2
for a given camera circle radius 𝑟 and camera field of

view 𝛾 . The field of view of our cameras is effectively 𝛾 = 𝜋 , as

they capture the complete outward-facing hemisphere. This yields

the radius of the camera circle as the upper limit of the viewing

space radius. Experiments verify this behaviour, our synthesis works

anywhere inside the camera circle, i.e. most of our OmniPhotos

provide a head box with 1-metre diameter (capture radius: 55 cm).

Schroers et al. [2018] also analysed the minimum visible depth

observed by two cameras in a circular configuration. Their formula

is expressed in terms of the field of view 𝛾 = 𝜋 and the angle 𝜃

between optical axes of adjacent cameras (𝜃 ≈ 2𝜋
𝑁

for 𝑁 cameras):

𝑑 = 𝑟
sin(𝜋 − 𝛾/2)
sin(𝛾/2 − 𝜃 ) =

𝑟

cos

(
2𝜋
𝑁

) . (8)

For 𝑁 = 90 cameras, like in our case, this evaluates to 0.24% of the

capture circle radius, or 1.3mm for 𝑟 = 55 cm, which is negligible.

Compression. OmniPhotos can be compressed from 1.4 GB to a

more reasonable 0.25 GB (18%) using off-the-shelf 7-Zip. A further

0.07 GB can be saved if optical flow fields are not transmitted and

instead computed on the local machine (final size: 0.18 GB or 13%).

6.1 Limitations and future work

All approaches have limitations; we discuss the most important ones

here and use them to motivate directions for future work.

Proxy geometry. While deforming a sphere mesh to fit into the
reconstructed point cloud usually works well in practice (see Fig-

ure 6), it clearly has its limitations. Its fixed topology combined

with the enforced smoothness produces a relatively smooth proxy

geometry, which can cause warping artefacts in areas with large

depth differences. Object boundaries of nearby objects, essential for

(dis-)occlusion effects, cannot be fitted tightly enough, leading to

warping artefacts that tend to change as the viewpoint changes (see

Figure 10). These issues could potentially be overcome in different

Proxy warping artefact Flow warping artefact Stitching artefact

Fig. 10. Remaining visual artefacts in our results. Errors in the proxy ge-

ometry or optical flow may produce warping artefacts. We observed proxy

warping artefacts primarily at large depth discontinuities, while most flow

warping artefacts affect objects adjacent to a uniform region like the sky. A

stitching bug in the Insta360 Studio software causes a ‘swimming’ artefact.

ways: (1) Mesh vertices could be moved more freely, not just radi-

ally, e.g. to align to depth edges. (2) Multi-view stereo or optical

flow correspondences would provide more scene points that can

make the proxy geometry more accurate and detailed. (3) Learned

methods like monocular depth estimation [e.g. Wang et al. 2020]

or implicit scene representations [e.g. Mildenhall et al. 2019] could

be used to densify sparse reconstructions, especially in texture-less

regions. As demonstrated by the ground-truth proxy experiment in

Table 1, better proxy geometry improves visual results, as expected.

Optical flow. Even though the quantitative evaluation in Table 1

may suggest otherwise, flow-based blending helps reduce ghosting

artefacts when the scene proxy does not fit the real scene geometry

tightly. Examples for this include detailed geometry, like fences or

thin tree branches (Figure 8), or reflections, for which there is a

mismatch between the real and apparent depth. In some cases, we

observed that FlowNet2 predicted incorrect flow near strong edges,

e.g. a ship vs the blue sky (see Figure 10), which results in view

interpolation artefacts. In these cases, we fall back to DIS flow.

Stitching artefacts. We observed minor to moderate stitching arte-

facts being introduced in some videos, particularly those captured

at 3K/100Hz. These artefacts are not limited to the overlap region

between the two fisheye lenses and appear to be caused by warping

parts of the video frame incorrectly, probably due to a software

bug.
5
Since the artefacts are not consistent over time, they can

cause ‘swimming’ during rendering, as shown in Figure 10. We only

found these artefacts in the stabilised stitch, not the standard stitch.

However, we consider the benefits of the stabilised stitch (improved

camera reconstruction and flow computation) to outweigh these

usually minor artefacts in some of our OmniPhotos.

Vertical motion. Our approach provides compelling 5-degree-of-

freedom (5-DoF) view synthesis by supporting arbitrary head ro-

tations as well as translations in the plane of the capture circle

(see Figure 2). The missing DoF is vertical translation as our cap-

ture approach deliberately captures viewpoints at roughly the same

height and thus cannot plausibly synthesise new viewpoints from

a different height. In practice, this is not a problem for seated VR

experiences, where users naturally keep their heads at a consistent

5
This bug in the proprietary software Insta360 Studio 3.4.2 has been fixed in v3.4.10.
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height. Capturing camera views on a sphere instead of a circle can

overcome this limitation [Luo et al. 2018; Overbeck et al. 2018].

Memory footprint. Our uncompressed OmniPhotos require more

than one GB of memory, which is manageable for a 360° VR photo

experience, but cannot be easily extended to 360° VR video. By far the

largest contributor to this memory footprint are the precomputed

optical flow fields. Reducing the number of input views can reduce

the memory footprint, and so can discarding the inward-facing

hemisphere of the input images and their flow fields. In many cases,

the proxy geometry aligns the input views sufficiently well without

optical flow. In these regions, no flow needs to be stored, which

could lead to a more compact scene-dependent flow storage format.

Editing. Our OmniPhotos are currently limited to reproducing

the scenes that were captured as is. Virtual objects, such as digital

humans, can easily be rendered on top, but the quality of occlusions

by scene geometry, such as trees or buildings, is limited by the detail

of the proxy geometry. Relighting the captured scene, adding new

objects with consistent lighting, or removing captured objects are

interesting directions for future work.

Combination of proxy and flow. For future work, we would like
to investigate the design space of camera poses, proxy geometry

and optical flow with respect to the observed visual artefacts in the

rendered results. A promising direction might be a differentiable

renderer for jointly optimising scene and camera geometry as well

as flows to maximise the quality of synthesised views.

7 CONCLUSION

We presented OmniPhotos, a new type of 360° VR photography that

enables fast, casual and robust capture of immersive real-world VR

experiences. The key to the fast capture of OmniPhotos is to rotate a

consumer 360° video camera mounted on a rotary selfie stick, which

takes less than 3 seconds per loop or 10 seconds overall, and is

currently the fastest approach for capturing immersive 360° VR pho-

tos. The visual quality of our novel view rendering is significantly

improved by the automatic reconstruction of a scene-adaptive de-

formable proxy geometry, which reduces the number of required

input views by a factor of 4 and strongly reduces vertical distor-

tion compared to the state of the art. Our approach robustly creates

OmniPhotos across a wide range of outdoor scenes, as demonstrated

in our results and supplemental material. We will publicly release

our OmniPhotos implementation in the hope of enabling casual

consumers and professional users to create and experience their

own OmniPhotos.
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